

MANONMANIAMSUNDARANARUNIVERSITY-TIRUNELVELI U PROGRAMMES

OPENANDDISTANCELEARNING(ODL)PROGRAMMES

(FORTHOSEWHOJOINEDTHEPROGRAMMESFROMTHEACADEMICYEAR2023-2024 ONWARDS)

B.SC MATHEMATICS					
Semester	Course	Title of the Course	Course Code	Credits	
	Core-IX	Abstract Algebra	JMMA51	4	
	Core-X	Real Analysis	JMMA52	4	
	Core-XI	Mathematical Modeling	JMMA53	4	
V	Core-XII	Number Theory	JMMA54	4	
	Major Elective-V	Discrete Mathematics	JEMA51	3	
	Major Elective-VI	Combinatorial Mathematics	JEMA52	3	
1	NMC/Substitute Course	Statistics with Excel Programming	JNMA51	3	

ABSTRACT ALGEBRA

UNIT I: Groups: Definition and Examples–Properties–Permutation Groups – Subgroups – Cyclic Groups. (Chapter3: Sections-3.1,3.2, 3.4to 3.6)

UNIT II: Order of an element–Cosets and Lagrange"s Theorem– Normal subgroups and Quotient groups. (Chapter3:Sections-3.7to3.9)

UNIT III: Isomorphism- Cayley"s Theorem-Homomorphisms- Fundamental Theorem.

(Chapter3: Sections-3.10and 3.11)

UNITIV: Rings: Definition and examples –Properties – Types of rings – Characteristic of a ring–Subrings–Ideals. Some special classes of rings- homomorphism of rings- Ideals and quotient rings–More ideals and quotient rings. (Chapter4:Section-4.1,4.2,4.4to4.7)

UNIT V: Quotient Rings – Maximal and Prime Ideals –Homomorphism and Isomorphism of Ring -The field of quotients of an Integral Domain. (Chapter4:Section-4.3, 4.8to 4.11)

Recommended	S. Arumugamand A. Thangapandi Isaac, Modern Algebra, Scitech
Text	Publications, 2014.

REAL ANALYSIS

UNIT1: Metric spaces: Definition and Examples–Bounded sets– Open ball– Open sets – Subspaces– Interiorofaset. (Chapter2: Section-2.1to 2.6)

UNIT2: Closed sets-Closure- Limit point-Dense set- Complete metric space: Completeness-Cantor"s intersection theorem- Baire"s Category theorem.

(Chapter2: Sections-2.7 to 2.10 and Chapter 3: Sections–3.1 and 3.2)

UNIT3: Continuity: Continuity –Homeomorphism–Uniform Continuity– Discontinuous functions on *R*. (Chapter4:Sections-4.1to 4.4)

UNIT4: Connectedness: Definition and Examples–Connected subsets of *R*– Connectedness and continuity–Contraction mapping theorem. (Chapter 5:Sections-5.1to 5.3 and Chapter 8: Section-8.1)

UNIT5: Compactness: Compact metric spaces—Compact subsets of R— Equivalent characterizations for compactness—Compactness and Continuity. (Chapter6: Sections-6.1to6.4)

Recommended	S. Arumugam and A. Thangapandi Issac, Modern Analysis, New Gamma
Text	Publishing House, Palayamkottai, 2015

MATHEMATICAL MODELLING

UNIT I: Mathematical Modelling: Simple situations requiring mathematical modelling, characteristics of mathematical models. (Chapter1:Sections-1.1and1.4)

UNIT II: Mathematical Modelling through differential equations: Linear Growth and Decay Models. Non-Linear growth and decay models, Compartment models.

(Chapter2: Sections-2.1to2.4)

UNIT III: Mathematical Modelling, through system of Ordinary differential equations of first order: Prey-predator models, Competition models, Model with removal and model with immigrations. Epidemics: simple epidemic model, Susceptible-infected- susceptible (SIS) model, SIS model with constant number of carriers. Medicine: Model for Diabetes Mellitus.

UNIT IV: Introduction to difference equations. (Chapter5: Sections -5.1, 5.2.1 to 5.2.3)

(Chapter3: Sections-3.1.1,3.1.2,3.2.1to3.2.4,3.2.6,3.5.1)

UNIT V: Mathematical Modelling through difference equations: Harrod Model, cob web model application to Actuarial Science (Chapter5: Sections-5.3.1,5.3.2, 5.3.4)

Recommended	1. JN Kapur, Mathematical Modeling, New Age International
Text	Publishers,2009.

NUMBER THEORY

UNIT I: Preliminaries: Mathematical induction—The Binomial Theorem—Early Number Theory. (Chapter1: Sections-1.1, 1.2and Chapter2: Section – 2.1)

UNIT II: Division Algorithm–GCD–Euclidean Algorithm– The Diophantine Equation ax + by = c. (Chapter2:Sections-2.3 to2.5)

UNIT III: The fundamental Theorem of Arithmetic—The Sieve of Eratosthenes—The Gold bach conjecture. (Chapter3:Sections -3.1to 3.3)

UNITIV: Basic properties of congruences—Binary and Decimal representation of integer Linear congruence and The Chinese Remainder Theorem.

(Chapter4: Sections-4.2 to 4.4)

Unit V: Fermat's Theorem–Wilson's Theorem–The Fermat- Kraitchik Factorization Method. (Chapter5: Sections-5.1 to 5.4)

Recommended Text

1. David M. Burton, Elementary Number Theory, Mc Graw Hill Education (India) Pvt. Ltd., New Delhi, 2014.

DISCRETE MATHEMATICS

UNIT I: Mathematical logic: Statements and Notations - Connectives- Negation - Conjunction -Disjunction -Statement formulas and truth table - Conditional and Biconditional-Wellformed formulas - Tautologies. (Chapter1: Sections-1.1,1.2.1 to 1.2.4,1.2.6 to 1.2.8)

UNIT II: Normal forms-Disjunctive Normal forms Conjunctive Normal forms Principal Disjunctive Normal forms-Principal conjunctive Normal forms – Ordering and Uniqueness of Normal forms – Validity using truth tables – Rules of inference.

(Chapter1: Sections-1.3.1to1.3.5,1.4.1,1.4.2)

UNIT III: The Predicate calculus-Predicates -The Statement function, Variables and quantifiers-Predicate formulas-Free and bound variables-The Universe of discourse-Inference theory of the predicate calculus-Valid formulas and Equivalence-Some valid Formulas over finite Universes–Special valid formulas involving quantifiers – Theory of inference for the Predicate calculus. (Chapter1:Sections-1.5.1to1.5.5and1.6.1to1.6.4)

UNIT IV: Relations and Ordering-Relations-Properties of Binary relations in a set-Partial ordering- Partially ordered set: Representation and associated terminology-Functions: Definition and Introduction – Composition of functions– Inverse functions.

(Chapter2: Sections -2.3.1,2.3.2,2.3.8,2.3.9,2.4.1to2.4.3)

UNIT V: Lattices as partially ordered sets: Definition and examples Some properties of Lattices-Sublattices, Direct product and Homomorphism-Boolean algebra: Definition and examples- Sub Algebra, Direct product and Homomorphism.

(Chapter4: Sections-4.1.1, 4.1.2, 4.1.4, 4.2.1, 4.2.2)

Recommended Text

1. J.P. Tremblay, R. Manohar, Discrete Mathematical structures with Applications to Computer Science, TataMcGrawhill,2001.

COMBINATORIAL MATHEMATICS

UNIT I: Selections and Binomial coefficients—Permutations—Ordered selections—unordered selections— Miscellaneous Problems. (Chapter1: Sections - 1.1to 1.4)

UNIT II: Parings Problems: Pairings with in a set–Pairing between sets.

(Chapter2: Sections-2.1 and 2.2)

UNIT III: Recurrence-Fibonacci-type relations using generating functions-

Miscellaneous methods. (Chapter3:Sections-3.1to 3.4)

UNIT IV: The Inclusion-Exclusion Principles –Rook Polynomial. (Chapter4: Sections-4.1to 4.3)

UNIT V: Block designs—Square block designs. (Chapter5: Sections-5.1, 5.2)

Recommended Text

Ian C. Andersen, A First Course in Combinatorial Mathematics, Clarendon Press, Oxford, 1989.

STATISTICS WITH EXCEL PROGRAMMING

UNIT I: Distribution of data- Characteristics of data - Frequency distribution - Procedure for Constructing a Frequency Distribution- Using Excel to Construct a Frequency Distribution - Relative Frequency Distribution - Cumulative Frequency Distribution.

(Chapter 2: Pages 58 to 70)

UNIT II: Histograms - Relative Frequency Histogram - Normal Distribution - Common Distribution Shapes - Skewness - Using XLSTAT for Histograms - Graphs - Using Excel to Construct a Scatter plot - Correlation Coefficient.

(Chapter2:Pages70to81)

UNIT III: Time-Series Graph – Dot plots - Using XLSTAT for Stem plots - Bar Graphs - Using Excel to Create Bar Graphs – Pare to Charts - Pie Charts - Using Excel to Create Pie Charts - Frequency Polygon – Using Excel to Create Frequency Polygons.

(Chapter 2: Pages 81to 98)

UNIT IV: Descriptive statistics – Measures of Center-Mean-Using Excel to Calculate the Mean - Median - Using Excel to Find the median.

(Chapter 3:Pages 110 to 114)

UNIT V: Mode-Using Excel to Find the Mode - Midrange-Using Excel to Calculate the Midrange-Weighted Mean-Using Excel for Descriptive Statistics.

(Chapter-3: Pages114 to125)

Recommended Text	1. Mario F. Triola, Elementary Statistics Using Excel, Fifth
	Edition, Pearson New International Edition, 2014.